- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ge, Yufeng (2)
-
Grzybowski, Marcin_W (2)
-
Schnable, James_C (2)
-
Alvarez, Sophie (1)
-
Atefi, Abbas (1)
-
Ganapathysubramanian, Baskar (1)
-
Grove, Ryleigh_J (1)
-
Jin, Hongyu (1)
-
Jubery, Talukder_Z (1)
-
Naldrett, Michael_J (1)
-
Nishimwe, Aime_V (1)
-
Sun, Guangchao (1)
-
Torres‐Rodriguez, J_Vladimir (1)
-
Tross, Michael_C (1)
-
Wijewardane, Nuwan_K (1)
-
Zwiener, Mackenzie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundAccess to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. ResultsHere we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. ConclusionOur results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model.more » « less
-
Tross, Michael_C; Grzybowski, Marcin_W; Jubery, Talukder_Z; Grove, Ryleigh_J; Nishimwe, Aime_V; Torres‐Rodriguez, J_Vladimir; Sun, Guangchao; Ganapathysubramanian, Baskar; Ge, Yufeng; Schnable, James_C (, The Plant Phenome Journal)Abstract Estimates of plant traits derived from hyperspectral reflectance data have the potential to efficiently substitute for traits, which are time or labor intensive to manually score. Typical workflows for estimating plant traits from hyperspectral reflectance data employ supervised classification models that can require substantial ground truth datasets for training. We explore the potential of an unsupervised approach, autoencoders, to extract meaningful traits from plant hyperspectral reflectance data using measurements of the reflectance of 2151 individual wavelengths of light from the leaves of maize (Zea mays) plants harvested from 1658 field plots in a replicated field trial. A subset of autoencoder‐derived variables exhibited significant repeatability, indicating that a substantial proportion of the total variance in these variables was explained by difference between maize genotypes, while other autoencoder variables appear to capture variation resulting from changes in leaf reflectance between different batches of data collection. Several of the repeatable latent variables were significantly correlated with other traits scored from the same maize field experiment, including one autoencoder‐derived latent variable (LV8) that predicted plant chlorophyll content modestly better than a supervised model trained on the same data. In at least one case, genome‐wide association study hits for variation in autoencoder‐derived variables were proximal to genes with known or plausible links to leaf phenotypes expected to alter hyperspectral reflectance. In aggregate, these results suggest that an unsupervised, autoencoder‐based approach can identify meaningful and genetically controlled variation in high‐dimensional, high‐throughput phenotyping data and link identified variables back to known plant traits of interest.more » « less
An official website of the United States government
